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THE ESSENTIALLY CHIEF SERIES OF A COMPACTLY

GENERATED LOCALLY COMPACT GROUP

COLIN D. REID AND PHILLIP R. WESOLEK

Abstract. We first obtain finiteness properties for the collection of
closed normal subgroups of a compactly generated locally compact group.
Via these properties, every compactly generated locally compact group
admits an essentially chief series – i.e. a finite normal series in which
each factor is either compact, discrete, or a topological chief factor. A
Jordan–Hölder theorem additionally holds for the ‘large’ factors in an
essentially chief series.
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1. Introduction

Within the theory of locally compact groups, an important place is occu-
pied by the compactly generated groups. From a topological group theory
perspective, every locally compact group is the directed union of its com-
pactly generated subgroups, so problems of a ‘local’ nature can be reduced
to the compactly generated case. From a geometric perspective, such groups
admit a well-defined geometric structure and are the natural generalization
of finitely generated groups. Finally and most concretely, many examples
of locally compact groups of independent interest are compactly generated.
Any locally compact group that acts continuously, properly, and cocom-
pactly on a proper metric space is compactly generated; for example Aut(Γ)
is such a group for any Cayley graph Γ of a finitely generated group.

There is an emerging structure theory of compactly generated locally com-
pact groups which reveals that they have special properties, often in a form
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that has no or trivial counterpart in the theory of finitely generated discrete
groups. This theory could be said to begin with the paper Decomposing
locally compact groups into simple pieces of P.-E. Caprace and N. Monod,
[1], in which general results on the normal subgroup structure of compactly
generated locally compact groups are derived.

The key insight of Caprace and Monod is to study compactly generated
locally compact groups as large-scale topological objects. That is to say,
they observe that non-trivial interactions between local structure and large-
scale structure place significant restrictions on compactly generated locally
compact groups. Of course, these restrictions will always be up to compact
groups and discrete groups; e.g. these results are insensitive to, say, taking a
direct product with a discrete group. We stress that this theory nonetheless
can yield non-trivial results for discrete groups; consider [9] or [10].

The work at hand is a further contribution to the (large-scale topological)
structure theory of compactly generated locally compact groups. We first
establish finiteness conditions for the lattice of closed normal subgroups.
These conditions are then used to prove the existence of a finite chief se-
ries, up to compact groups and discrete groups, in any compactly generated
locally compact group.

Remark 1.1. Compactly generated locally compact groups are second count-
able modulo a compact normal subgroup; see [3, Theorem 8.7]. We thus
restrict to the second countable case whenever convenient.

1.1. Statement of results. A normal factor of a topological group G is
a quotient K/L such that K and L are distinct closed normal subgroups of
G with L < K. We say that K/L is a (topological) chief factor of G if
there are no closed normal subgroups of G strictly between L and K.

Definition 1.2. An essentially chief series for a locally compact group
G is a finite series

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of closed normal subgroups such that each normal factor Gi+1/Gi is either
compact, discrete, or a topological chief factor of G.

Every compactly generated locally compact group G admits an essentially
chief series; indeed, any finite normal series can be refined to an essentially
chief series.

Theorem 1.3 (See Theorem 4.4). Suppose that G is a compactly gener-
ated locally compact group. If (G1, G2, . . . , Gm) is an increasing sequence of
closed normal subgroups of G, then there exists an essentially chief series

{1} = K0 ≤ K1 ≤ · · · ≤ Kn = G

for G such that {G1, . . . , Gm} is a subset of {K0, . . . ,Kn}.

Corollary 1.4. Every compactly generated locally compact group admits an
essentially chief series.
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A Jordan–Hölder theorem additionally holds for essentially chief series.
For our Jordan–Hölder theorem, the association classes of chief factors are
uniquely determined:

Definition 1.5 (See [7]). For a topological group G, normal factors K1/L1

and K2/L2 are associated if K1L2 = K2L1 and Ki∩L1L2 = Li for i = 1, 2.

If chief factors K1/L1 and K2/L2 of G are associated, then there is a third
normal factor K/L of G such that each Ki/Li admits a G-equivariant con-
tinuous monomorphism into K/L with a dense normal image; see [7, Lemma
6.6]. Associated chief factors are not in general isomorphic as topological
groups. The association relation is also not an equivalence relation in gen-
eral, but it becomes one when restricted to non-abelian chief factors; see [7,
Proposition 6.8].

We must also ignore certain small chief factors.

Definition 1.6. For an l.c.s.c. group G, a chief factor K/L is called negli-
gible if it is either abelian or associated to a compact or discrete factor.

Theorem 1.7 (see Theorem 4.8). Suppose that G is a locally compact sec-
ond countable group and that G has two essentially chief series (Ai)

m
i=0 and

(Bj)
n
j=0. Define

I := {i ∈ {1, . . . ,m} | Ai/Ai−1 is a non-negligible chief factor of G}; and
J := {j ∈ {1, . . . , n} | Bj/Bj−1 is a non-negligible chief factor of G}.

Then there is a bijection f : I → J where f(i) is the unique element j ∈ J
such that Ai/Ai−1 is associated to Bj/Bj−1.

In [8], we show negligible non-abelian chief factors are limited in topo-
logical complexity. Specifically, they are either connected and compact or
totally disconnected with dense quasi-center. We also show the chief factors
themselves have a tractable internal normal subgroup structure.

Remark 1.8. The essentially chief series seems to be a useful tool with
which to study compactly generated locally compact groups. Via the exis-
tence of the series, questions can often be reduced to chief factors, which
are topologically characteristically simple. The essentially chief series can
also be used to establish non-existence results. For example, the uniqueness
given by Theorem 4.8 ensures any finitely generated just infinite branch
group has no infinite commensurated subgroups of infinite index; see [10].

Our results follow from a finiteness property of the lattice of closed normal
subgroups, which generalizes results of Caprace–Monod in [1]. The essential
tool is given by the Cayley–Abels graph; this graph is a connected locally
finite graph on which the group in question acts vertex-transitively with
compact open point stabilizers. The finite degree of such graphs along with
the usual dimension from Lie theory provide the finiteness from which all
other finiteness properties in this paper are deduced.
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A family of closed normal subgroups F is filtering if for all N,M ∈ F ,
there is K ∈ F with K ≤ N∩M . A family D is directed if for all N,M ∈ D,
there is K ∈ D with N ∪M ⊆ K.

Theorem 1.9 (See Theorem 3.3). Let G be a compactly generated locally
compact group.

(1) If F is a filtering family of closed normal subgroups of G, then there
exists N ∈ F and a closed normal subgroup K of G such that

⋂
F ≤

K ≤ N , K/
⋂
F is compact, and N/K is discrete.

(2) If D is a directed family of closed normal subgroups of G, then there
exists N ∈ D and a closed normal subgroup K of G such that N ≤ K ≤
〈D〉, K/N is compact, and 〈D〉/K is discrete.

Theorem 1.9 implies additionally the existence of interesting quotients.
For a property of groups P , a topological group G is called just-non-P if G
does not have P , but every proper non-trivial Hausdorff quotient G/N has
property P .

Theorem 1.10 (See Theorem 3.5). Let P be a property of compactly gen-
erated locally compact groups. If all groups with P are compactly presented
and P is closed under compact extensions, then for any compactly generated
locally compact group G, exactly one of the following holds:

(1) Every non-trivial quotient of G (including G itself) has P ; or
(2) G admits a quotient that is just-non-P .

Any quasi-isometry invariant property is stable under compact extensions,
so these properties occasionally fall under the previous theorem.

Corollary 1.11. Let G be a compactly generated locally compact group that
does not have polynomial growth. Then G admits a non-trivial quotient that
is just-not-(of polynomial growth).

Acknowledgments 1.12. Many of the ideas for this project were developed
during a stay at the Mathematisches Forschungsinstitut Oberwolfach; we
thank the institute for its hospitality. We also thank the anonymous referees
for their detailed suggestions.

2. Preliminaries

2.1. Notations and generalities. All groups are taken to be Hausdorff
topological groups and are written multiplicatively. Topological group iso-
morphism is denoted by '. We use “t.d.”, “l.c.”, and “s.c.” for “totally
disconnected”, “locally compact”, and “second countable.”

The collection of closed normal subgroups of a topological group G is
denoted by N (G). The connected component of the identity is denoted by
G◦. For any subset K ⊆ G, CG(K) is the collection of elements of G that
centralize every element of K. We denote the collection of elements of G
that normalize K by NG(K). The topological closure of K in G is denoted
by K. If G acts on a set X, G(x) denotes the stabilizer of x ∈ X in G.
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A topological group is Polish if it is separable and admits a complete,
compatible metric. A locally compact group is Polish if and only if it is
second countable; cf. [4, (5.3)].

For a poset P, a filtering family F ⊆ P in P is a subset of P such that
for all N,M ∈ F , there exists L ∈ F with L ≤M and L ≤ N . Dual to this
notion, D ⊆ P is a directed family if for all M,N ∈ D, there is L ∈ D
with M ≤ L and N ≤ L.

2.2. Chief factors and chief blocks. We here recall the basic theory
established in [7]. In the present work, this theory is lightly used to establish
the Jordan–Hölder theorem.

Definition 2.1. A normal factor of a topological group G is a quotient
K/L such that K and L are distinct closed normal subgroups of G with
L < K. We say that K/L is a (topological) chief factor of G if there are
no closed normal subgroups of G strictly between L and K.

There is a natural notion of ‘equivalence’ between chief factors:

Definition 2.2. For a topological group G, normal factors K1/L1 and
K2/L2 are associated if K1L2 = K2L1 and Ki ∩ L1L2 = Li for i = 1, 2.

Association is not an equivalence relation in general, but it becomes one
when restricted to the set of non-abelian chief factors of a topological group
G; see [7, Proposition 6.8]. For a non-abelian chief factor K/L, the equiv-
alence class of non-abelian chief factors equivalent to K/L is denoted by
[K/L]. The class [K/L] is called a chief block of G, and the set of chief
blocks of G is denoted by BG.

Given a Polish group G and normal subgroups N ≤ M of G, we say
that M/N covers [K/L] if there exist closed normal subgroups N ≤ B <
A ≤M of G for which A/B is a non-abelian chief factor associated to K/L.
Otherwise we say that M/N avoids [K/L]. We say that M covers or avoids
[K/L] if M/{1} does.

Our Jordan–Hölder theorem is a consequence of the following general
refinement theorem.

Theorem 2.3 ([7, Theorem 1.14]). Let G be a Polish group, K/L be a
non-abelian chief factor of G, and

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

be a series of closed normal subgroups in G. Then there is exactly one
i ∈ {0, . . . , n− 1} such that Gi+1/Gi covers [K/L].

2.3. Background on locally compact groups. A closed subgroup K of
a locally compact group G is cocompact if the coset space G/K is compact
when equipped with the quotient topology.

A locally compact group G is locally elliptic if every finite subset of G
is contained in a compact subgroup. The locally elliptic radical, denoted
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by RadLE(G), is the union of all closed normal locally elliptic subgroups of
G.

Theorem 2.4 (Platonov, [6]). For G a locally compact group, RadLE(G) is
the unique largest locally elliptic closed normal subgroup of G, and

RadLE(G/RadLE(G)) = {1}.

A (real) Lie group is a topological group that is a finite-dimensional
analytic manifold over R such that the group operations are analytic maps.
A Lie group G can have any number of connected components, but G◦ is
always an open subgroup of G. The group G/G◦ of components is thus
discrete.

Theorem 2.5 (Gleason–Yamabe; see [5, Theorem 4.6]). Let G be a locally
compact group. If G/G◦ is compact, then RadLE(G) is compact, and the
quotient G/RadLE(G) is a Lie group with finitely many connected compo-
nents.

Theorem 2.5 suggests a notion of dimension applicable to all locally com-
pact groups.

Definition 2.6. For a locally compact group G, the non-compact real
dimension, denoted by dim∞R (G), is the dimension of G◦/RadLE(G

◦) as a
real manifold.

The non-compact real dimension is always finite. It is superadditive, not
subadditive, with respect to extensions. Additionally, dim∞R (G) = 0 if and
only if G is compact-by-(totally disconnected).

The following technical consequence of Theorem 2.5 will be useful later:

Lemma 2.7. Suppose G is a locally compact group with closed normal sub-
groups H < L. If L is connected, then there is a closed normal subgroup
K E G such that H◦ ≤ K ≤ H with K/H◦ compact and H/K discrete. In
particular, K/K◦ is compact.

Proof. Let R := RadLE(L). The group R is a compact normal subgroup
of G and is such that L/R is a Lie group via Theorem 2.5. The group
HR/R is a closed subgroup of the Lie group L/R, hence HR/R is a Lie
group. Additionally, the connected component of HR/R equals H◦R/R.
The group K := H◦R ∩H satisfies the lemma. �

The basic structural properties of Lie groups stated in the proposition
below are classical and will be used without further comment.

Proposition 2.8.

(1) The only connected abelian Lie groups are groups of the form Ra × Tb
for a, b ≥ 0 where T := R/Z is the circle group.

(2) The factors in the closed derived series of a connected solvable Lie group
are themselves connected abelian Lie groups.
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(3) A Lie group L has a largest connected solvable normal subgroup, called
the solvable radical of L.

(4) A connected Lie group with trivial solvable radical is semisimple. A
semisimple Lie group L has discrete center, and L/Z(L) is a finite direct
product of abstractly simple groups.

(5) Every closed subgroup of a Lie group is a Lie group.
(6) The dimension of a Lie group L regarded as a real manifold, denoted by

dimR(L), is additive with respect to extensions: if dimR(L) = n and K
is a closed normal subgroup of dimension k, then dimR(L/K) = n− k.

We shall need one further observation about abelian Lie groups.

Lemma 2.9. Let A be a connected abelian Lie group. If A = 〈D〉 where D
is a directed family of closed subgroups of A, then some D ∈ D is cocompact
in A.

Proof. Write A as A = Ra×Tb for some non-negative integers a and b. Since
Tb is compact, we can pass to the quotient A/Tb and assume that A = Ra.
The conclusion now follows by considering the R-linear span of D for each
D ∈ D. �

2.4. Cayley–Abels graphs. Cayley–Abels graphs play an essential role in
the present work. Our discussion of Cayley–Abels graphs is somewhat more
technical than usual. This additional complication is necessary to ensure
the degree behaves well under quotients.

A graph Γ = (V,E, o, r) consists of a vertex set V = V Γ, a directed edge
set E = EΓ, a map o : E → V assigning to each edge an initial vertex,
and a bijection r : E → E, denoted by e 7→ e and called edge reversal,
such that r2 = id.

The terminal vertex of an edge is t(e) := o(e). A loop is an edge e
such that o(e) = t(e). For e a loop, we allow both e = e and e 6= e as
possibilities. The degree of a vertex v ∈ V is deg(v) := |o−1(v)|, and the
graph is locally finite if every vertex has finite degree. The degree of the
graph is defined to be

deg(Γ) := sup
v∈V Γ

deg(v).

The graph is simple if the map E → V × V defined by e 7→ (o(e), t(e)) is
injective and no edge is a loop.

An automorphism of a graph is a pair of permutations αV : V → V
and αE : E → E that respect initial vertices and edge reversal: αV (o(e)) =

o(αE(e)) and αE(e) = αE(e). For simple graphs, automorphisms are just
permutations of V that respect the edge relation in V × V .

For G a group acting on a graph Γ and v ∈ V Γ, the orbit of v under
G is denoted by Gv. We denote the orbit of an edge e ∈ EΓ under G by
Ge. The action of G gives a quotient graph Γ/G as follows: the vertex
set VG is the set of G-orbits on V and the edge set EG is the set of G-
orbits on E. The origin map õ : EG → EG is defined by õ(Ge) := Go(e);
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this is well-defined since graph automorphisms send initial vertices to initial
vertices. The reversal r̃ : EG → EG is given by Ge 7→ Ge; this map is also
well-defined. We will abuse notation and write o and r for õ and r̃.

We stress an important feature of quotient graphs: If N is a normal
subgroup of G, then Γ/N is naturally equipped with an action of G with
kernel containing N . The action of G on Γ/N therefore factors through
G/N .

Lemma 2.10. Let G be a group acting on a graph Γ with N a normal
subgroup of G.

(1) If deg(Γ) is finite, then deg(Γ/N) ≤ deg(Γ), with equality if and only if
there exists a vertex v ∈ V of maximal degree such that the elements of
o−1(v) all lie in distinct N -orbits.

(2) For v ∈ V , the vertex stabilizer in G of Nv is NG(v).

Proof. (1) Take v ∈ V Γ and letNe be an edge of Γ/N such that o(Ne) = Nv.
There then exists v′ ∈ Nv and e′ ∈ Ne such that o(e′) = v′, and hence
o(ge′) = v where g ∈ N is such that gv′ = v. In other words, all edges
of Γ/N starting at Nv are represented by edges of Γ starting at v. Hence
deg(Nv) ≤ deg(v), and deg(Nv) = deg(v) if and only if every edge in
o−1(v) is mapped to a distinct edge of Γ/N . Since v ∈ V Γ was arbitrary,
the conclusions for the degree of Γ/N are clear.

(2) Let H be the vertex stabilizer of Nv in G; that is, H is the setwise
stabilizer of Nv. That N is normal ensures Nv is a block of imprimitivity
for the action of G on V Γ. We thus deduce that G(v) ≤ H, so G(v) = H(v).
Since N is transitive on Nv and N ≤ H, it follows that NG(v) = H. �

Definition 2.11. For G a t.d.l.c. group, a Cayley–Abels graph for G is
a connected graph of finite degree on which G acts vertex-transitively such
that the vertex stabilizers are open and compact. A Cayley–Abels graph
for a locally compact group G is a Cayley–Abels graph for the t.d.l.c. group
G/G◦. That is to say, a Cayley–Abels graph for a locally compact group G
is a locally finite connected graph on which G acts vertex-transitively and
such that the vertex stabilizers are open and connected-by-compact.

The following proposition is a standard result; see for example [2, Propo-
sition 2.E.9].

Proposition 2.12. Let G be a locally compact group. The group G has a
Cayley–Abels graph if and only if G is compactly generated. Moreover, if
G is compactly generated, then for every compact open subgroup U/G◦ of
G/G◦, there exists a Cayley–Abels graph Γ for G such that U is a vertex
stabilizer.

The vertices of a Cayley–Abels graph have the same degree, since G acts
vertex-transitively by graph automorphisms. This leads to an invariant for
compactly generated groups.
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Definition 2.13. If G is a compactly generated locally compact group, the
degree deg(G) of G is the smallest degree of a Cayley–Abels graph for G.

We see that deg(G) = 0 if and only if G is connected-by-compact, hence
we infer the following:

Observation 2.14. For G a compactly generated locally compact group
deg(G) + dim∞R (G) = 0 if and only if G is compact.

Essential to the work at hand are the groups which act on (Cayley–Abels)
graphs like discrete groups.

Definition 2.15. Given a group G acting on a graph Γ, we say that G acts
freely modulo kernel on Γ if the vertex stabilizer G(v) acts trivially on
both the vertices and the edges of Γ for all v ∈ V .

Proposition 2.16. Let G be a compactly generated locally compact group,
N be a closed normal subgroup of G, and Γ be a connected graph of finite
degree on which G acts vertex-transitively.

(1) If Γ is a Cayley–Abels graph for G, then Γ/N is a Cayley–Abels graph
for G/N .

(2) We have deg(Γ/N) ≤ deg(Γ), with equality if and only if N acts freely
modulo kernel on Γ.

Proof. (1) The graph Γ/N is connected, and G acts vertex-transitively on
Γ/N . Lemma 2.10(1) ensures that deg(Γ/N) is also finite. The fact that the
vertex stabilizers are connected-by-compact and open in G/N follows from
Lemma 2.10(2).

(2) Fix v ∈ V . Lemma 2.10 ensures deg(Γ/N) ≤ deg(Γ) with equality if
and only if the elements of o−1(v) all lie in distinct N -orbits. We thus deduce
the first claim of (2), and for the second, it suffices to show the elements of
o−1(v) all lie in distinct N -orbits if and only if N acts freely modulo kernel
on Γ.

Suppose N acts freely modulo kernel on Γ. For an edge e of Γ, if o(e) is
fixed by g ∈ N , then ge = e. The elements of o−1(v) thus all lie in distinct
N -orbits.

Conversely, suppose the elements of o−1(v) all lie in distinct N -orbits.
Any element of N that fixes v must also fix o−1(v) pointwise. Each g ∈ N(v)

then fixes t(e), so g fixes all the neighbors of v. We thus concludeN(v) ≤ N(w)

where w ∈ V Γ is adjacent to v.
As G acts vertex-transitively on Γ and N is normal in Γ, the choice of v

is not important, so in fact, N(v′) ≤ N(w′) for (v′, w′) any pair of adjacent
vertices of Γ. That Γ is connected now implies all vertex stabilizers of N
acting on Γ are equal. Moreover, they fix every edge of Γ, since every edge
lies in o−1(w) for some w ∈ V Γ. The group N therefore acts freely modulo
kernel on Γ. �
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3. Finiteness properties of the lattice of closed normal
subgroups

We here establish a finiteness property of the lattice of closed normal
subgroups. As an immediate consequence, we obtain the existence of certain
quotients with an interesting minimality condition.

3.1. Directed and filtering families of normal subgroups. Claim (1)
of the next lemma is more or less a restatement of [1, Proposition 2.5]. We
give a proof for completeness.

Lemma 3.1. Let G be a compactly generated t.d.l.c. group and Γ be a
Cayley–Abels graph for G.

(1) Let F be a filtering family of closed normal subgroups of G and set
M :=

⋂
F . Then there exists N ∈ F such that deg(Γ/N) = deg(Γ/M).

(2) Let D be a directed family of closed normal subgroups of G and set

M := 〈D〉. Then there exists N ∈ D such that deg(Γ/N) = deg(Γ/M).

Proof. Fix v ∈ V Γ. For N ∈ N (G), the value deg(Γ/N) is determined by the
number of orbits of the action of N(v) on the set X of edges issuing from v.
Defining α(N) to be the subgroup of Sym(X) induced by N(v) on X, we see
that deg(Γ/N) = deg(Γ/M) if α(N) = α(M). The assignment N 7→ α(N)
is also order-preserving. For a filtering or directed family N ⊆ N (G), the
family α(N ) := {α(N) | N ∈ N} is then a filtering or directed family of
subgroups of Sym(X). That Sym(X) is a finite group ensures α(N ) is a
finite family, so it admits a minimum or maximum, according to whether N
is filtering or directed.

Claim (2) is now immediate. The directed family α(D) admits a max-
imal element α(N). It then follows that α(N) = α(M), so deg(Γ/N) =
deg(Γ/M).

For (1), an additional compactness argument is required. If G acts freely
modulo kernel on Γ, then N ∈ F and M also act as such. The desired result
then follows since deg(Γ/N) = deg(Γ) = deg(Γ/M). Let us assume that G
does not act freely modulo kernel, so G(v) acts non-trivially on Γ for any
v ∈ V Γ.

Take α(N) ∈ α(F) to be the minimum. Given r ∈ α(N), let Y be the set
of elements of G(v) that do not induce the permutation r on X. If r 6= 1,
then plainly Y 6= G(v). If r = 1, then Y 6= G(v) since G(v) acts non-trivially
on Γ. The set Y is a proper open subset of G(v), and thus G(v) \ Y is a
non-empty compact set.

Letting K be a finite subset of F , the group K :=
⋂
F∈K F contains some

element of F , so α(K) ≥ α(N). In particular, K(v) 6⊆ Y . The intersection⋂
F∈K

(F(v) ∩ (G(v) \ Y ))
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is therefore non-empty. Compactness now implies that

M(v) ∩ (G(v) \ Y ) =
⋂
F∈F

(F(v) ∩ (G(v) \ Y )) 6= ∅;

that is, some element of M(v) induces the permutation r on X. Since r ∈
α(N) is arbitrary, we conclude that α(M) = α(N), and so deg(Γ/N) =
deg(Γ/M). �

The conclusion of claim (1) in Lemma 3.1 implies that the factor N/M is
“discrete” from the point of view of the Cayley–Abels graph.

Lemma 3.2. Let G be a compactly generated t.d.l.c. group with N a closed
normal subgroup of G. If there is a Cayley–Abels graph Γ for G such that
deg(Γ/N) = deg(Γ), then there exists a compact normal subgroup L of G
acting trivially on Γ such that L is an open subgroup of N .

Proof. In view of Proposition 2.16, N acts freely modulo kernel on Γ. For U
the pointwise stabilizer of the star o−1(v) for some vertex v, the subgroup U
is a compact open subgroup of G, and its core K is the kernel of the action
of G on Γ. Since N acts freely modulo kernel, we deduce that N ∩ U ≤ K.
The group L := K ∩N now satisfies the lemma. �

Combining our results on Cayley–Abels graphs with the Gleason–Yamabe
Theorem, we obtain a result that applies to compactly generated locally
compact groups without dependence on a choice of Cayley–Abels graph.

Theorem 3.3. Let G be a compactly generated locally compact group.

(1) If F is a filtering family of closed normal subgroups of G, then there
exists N ∈ F and a closed normal subgroup K of G such that

⋂
F ≤

K ≤ N , K/
⋂
F is compact, and N/K is discrete.

(2) If D is a directed family of closed normal subgroups of G, then there
exists N ∈ D and a closed normal subgroup K of G such that N ≤ K ≤
〈D〉, K/N is compact, and 〈D〉/K is discrete.

Proof. (1) The group G/
⋂
F is a compactly generated locally compact

group, so we assume that
⋂
F = {1}. Fix a Cayley–Abels graph Γ for

G and let E be the kernel of the action of G on Γ. Since G◦ ≤ E, we
have G◦ = E◦, and E/G◦ is compact, since E/G◦ is the core of a com-
pact open subgroup of G/G◦. Theorem 2.5 thus ensures R := RadLE(E) is
compact and the quotient E/R is a Lie group with finitely many connected
components. Observe additionally that R E G.

For N ∈ N (G), set aN := deg(Γ/NG◦) and bN := dimR((N ∩ E)R/R).
Both aN and bN are natural numbers depending on N in a monotone fashion:
given N,N ′ ∈ N (G) such that N ≤ N ′, then aN ≥ aN ′ and bN ≤ bN ′ . By
Lemma 3.1, there exists N ∈ F such that aN = deg(Γ/NG◦) = deg(Γ).
Since F is a filtering family, we can choose N such that additionally bN is
minimized across N ∈ F . Fix such an N .
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We argue claim (1) holds for N and K := N∩E∩R. Since R is compact, it
suffices to show N/K is discrete. Consider first N ∩E. By Proposition 2.16,
NG◦ acts freely modulo kernel on Γ, hence N acts freely modulo kernel on
Γ. The group N ∩ E is thus a vertex stabilizer of the action of N on Γ. In
particular, N ∩ E is open in N . It now suffices to show that K is open in
N ∩ E.

Consider ((N ∩ E)R/R)◦ and suppose for contradiction that there is an
infinite compact identity neighborhood T/R of ((N ∩ E)R/R)◦; we assume
that TR = T . Find U  T open containing 1 with U = UR. For F ∈ F
with F ≤ N , the minimality of bN implies (F ∩ E)R/R is a subgroup of
(N ∩ E)R/R with the same dimension bN . Consequently, (F ∩ E)R/R
contains ((N ∩ E)R/R)◦, and

T = FR ∩ T = (F ∩ T )R.

We infer that (F ∩T ) 6⊆ U , so F intersects the non-empty compact set T \U .
As F is a filtering family, it follows by compactness that

⋂
F ∩ T intersects

T \ U . However, this is absurd since
⋂
F ∩ T = {1}.

All compact identity neighborhoods of ((N ∩ E)R/R)◦ are thus finite.
It follows that a singleton set is open, so ((N ∩ E)R/R)◦ is discrete. The
only discrete connected group is the trivial group, so ((N ∩ E)R/R)◦ is
in fact trivial. Since (N ∩ E)R/R is a Lie group, we conclude the group
(N ∩ E)R/R ' (N ∩ E)/K is discrete, verifying (1) holds for N and K.

(2) SetM := 〈D〉 and let Γ be a Cayley–Abels graph forG. By Lemma 3.1,
there exists N ∈ D such that deg(Γ/NG◦) = deg(Γ/MG◦). Moreover,
Γ/NG◦ = Γ/N is a Cayley–Abels graph for G/N by Proposition 2.16. Pass-
ing to the quotient G/N and replacing Γ with Γ/N , we may assume that
deg(Γ) = deg(Γ/MG◦) and that M acts freely modulo kernel on Γ.

Let E be the kernel of the action of G on Γ and let L := M ∩ E. Our
assumptions ensure that L is open in M . We will now find an F ∈ D and
a closed J E G such that J is an open subgroup of L and that JF/F is
compact; this will prove (2) with K := JF and N := F .

As in (1), the group R := RadLE(E) is compact, and the quotient E/R is
a Lie group with finitely many connected components. Let N ∈ D witness
the minimum of the set

{dimR(E/(N ∩ E)R) | N ∈ D}

and consider S := (N ∩E)R. For all D ∈ D such that D ≥ N , the quotient
(D ∩ E)R/S is discrete, by our choice of S. Every element of (D ∩ E)R/S
thereby has an open centralizer in G, and hence (D ∩ E)R/S is centralized
by (G/S)◦. As L = M ∩ E is open in M ,

L =
⋃
D∈D

(D ∩M ∩ E) =
⋃
D∈D

(D ∩ E).



THE ESSENTIALLY CHIEF SERIES 13

The group LR/S is thus centralized by (G/S)◦, and a fortiori, (LR/S)◦ is
abelian.

The group E/S is a Lie group, so LR/S is also a Lie group. We infer
that (LR/S)◦ is an open subgroup of LR/S. The component (LR/S)◦ thus
contains a dense subgroup which is formed of a directed union of discrete
subgroups of the form (D∩E)R/S∩(LR/S)◦. Since (LR/S)◦ is a connected
abelian Lie group, Lemma 2.9 ensures there is some F ∈ D such that (F ∩
E)R/S ∩ (LR/S)◦ is cocompact in (LR/S)◦. Fix F ∈ D with this property.

There is a compact set A ⊆ LR/S such that (LR/S)◦ ⊆ A(F ∩ E)R/S.
Letting π : LR/S → LR/(F ∩ E)R be the usual projection, π((LR/S)◦) ≤
π(A) which is compact. Let J E L be the preimage in L of the connected
component of L/(F ∩E)(R∩L) ' LR/(F ∩E)R. We see that J/(F ∩E)(R∩
L) is compact, and since R is compact, in fact J/(F ∩ E) is compact.

The subgroup J is invariant under continuous automorphisms of L that fix
(F∩E)(R∩L), so J E G. Additionally, J is an open subgroup of L. Forming
JF , the quotient JF/F ' J/F ∩ J is a quotient of the compact group
J/(F ∩E). We have thus found the desired subgroups, and (2) follows. �

3.2. Just-non-P quotients. As an immediate application of Theorem 3.3,
we show certain quotients exist.

Definition 3.4. For P a property of groups, we say that a non-trivial locally
compact group G is just-non-P if every proper non-trivial quotient of G
has P , but G itself does not have P .

The properties P we consider must enjoy the following permanence prop-
erty: A property P of locally compact groups is closed under compact
extensions if for a compactly generated locally compact group G with a
compact normal subgroup N , the group G has P if and only if G/N has P .
Quasi-isometry invariant properties are closed under compact extensions;
see [2, Proposition 1.D.4].

A compactly generated locally compact group G is called compactly
presented if there is a compact generating set S such that G has a presen-
tation 〈S|R〉 where the relators R have bounded length. Being compactly
presented is a quasi-isometry invariant property of compactly generated lo-
cally compact groups; see [2, Corollary 8.A.4].

Theorem 3.5. Let P be a property of locally compact groups. If all groups
with P are compactly presented and P is closed under compact extensions,
then for any compactly generated locally compact group G, exactly one of the
following holds:

(1) Every non-trivial quotient of G (including G itself) has P ; or
(2) G admits a quotient that is just-non-P .

Proof. Let F be the collection of proper closed normal subgroups N of G
such that G/N fails to have property P . If F = ∅, then G satisfies (1), and
we are done. Assuming F 6= ∅, we claim increasing chains in F have upper
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bounds. Let (Nα)α∈I be an ⊆-increasing chain and put L :=
⋃
α∈I Nα. Sup-

pose for contradiction G/L has property P ; in particular, G/L is compactly
presented.

Appealing to Theorem 3.3, we may find γ ∈ I and a closed K E G such
that Nγ ≤ K ≤ L with L/K discrete and K/Nγ compact. The group G/L
is a quotient of G/K with kernel L/K. Moreover, since G/L is compactly
presented, [2, Proposition 8.A.10] implies the discrete group L/K is finitely
normally generated as a subgroup of G/K.

Let X ⊆ L/K be a finite normal generating set. Since
⋃
α∈I Nα is dense

in L and K is open in L, we may find Nβ for some β > γ such that NβK/K
contains X. The normality of Nβ implies that indeed NβK = L. The group
G/L is thus a quotient of G/Nβ with kernel KNβ/Nβ. The kernel KNβ/Nβ

is compact, so G/Nβ is a compact extension of G/L. Hence, G/Nβ has
property P , an absurdity.

We conclude that increasing chains in F have upper bounds. Applying
Zorn’s lemma, we may find N ∈ F maximal. The maximality of N ensures
every proper non-trivial quotient of G/N has property P , verifying (2). �

Let G be a compactly generated locally compact group with compact
symmetric generating set X. The group G has polynomial growth if
there are constants C, k > 0 such that µ(Xn) ≤ Cnk for all n ≥ 1, where µ
is a Haar measure. Having polynomial growth is a quasi-isometry invariant
property, and compactly generated locally compact groups with polynomial
growth are necessarily compactly presented, [2, Proposition 8.A.25].

The following corollary is now immediate from Theorem 3.5.

Corollary 3.6. Let G be a compactly generated locally compact group.

(1) If some quotient of G is not compactly presented, then G admits a quo-
tient that is just-non-(compactly presented).

(2) If G does not have polynomial growth, then G admits a quotient that is
just-not-(of polynomial growth).

We remark that groups in which all proper quotients are compactly pre-
sented satisfy a stronger version of Theorem 3.3(2).

Proposition 3.7. Let G be a compactly generated locally compact group
such that every proper quotient of G is compactly presented. If D is a directed
family of closed normal subgroups of G, then there exists N ∈ D such that
〈D〉/N is compact.

Proof. Without loss of generality 〈D〉 6= {1}. By Theorem 3.3(2), there

existsM ∈ D and a closed normal subgroupK ofG such thatM ≤ K ≤ 〈D〉,
〈D〉/K is discrete, and K/M is compact. The group G/〈D〉 is compactly

presented, so 〈D〉/K is normally generated in G by a finite set. It now

follows there exists M ≤ N ∈ D such that 〈D〉 = NK. In particular, 〈D〉/N
is compact, as required. �
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4. Essentially chief series

Definition 4.1. An essentially chief series for a compactly generated
locally compact group G is a finite series

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of closed normal subgroups such that each normal factor Gi+1/Gi is either
compact, discrete, or a topological chief factor of G.

We now show that any compactly generated locally compact group admits
an essentially chief series; more precisely, any finite normal series can be
refined to an essentially chief series.

4.1. Existence of essentially chief series. We begin with two technical
results which prove the existence of essentially chief refinements of normal
series, with bounds on the number of factors required. These lemmas deal
with the connected case and totally disconnected case, respectively.

Lemma 4.2. Suppose that G is a compactly generated locally compact group,
H ≤ L are closed normal subgroups of G, and d := dim∞R (L) − dim∞R (H).
If L/H is connected-by-compact, then there is a series

H = G0 ≤ G1 ≤ · · · ≤ Gk = L

of closed normal subgroups of G with k ≤ 2d + 1 such that each factor
Gi+1/Gi is either compact, discrete, or a chief factor of G. Additionally, at
most d factors are neither compact nor discrete.

Proof. Let us first assume that L/H is connected and RadLE(L/H) = {1};
we will here prove the result with k ≤ 2d. In this situation, L/H is a Lie
group and d = dimR(L/H). There is then i ≤ d and a series H = M0 <
M1 · · · < Mi = L of closed G-invariant subgroups such that each of the
factors Mj/Mj−1 =: Vj is connected, has positive dimension, and has no
proper closed G-invariant subgroup of positive dimension.

For each 1 ≤ j ≤ i, the factor Vj is either compact, a non-compact
semisimple Lie group such that G permutes transitively the simple factors,
or Rn such that G acts irreducibly. If Vj is compact, we do nothing. In the
second case, we take Nj such that Nj/Mj−1 = Z(Vj). The factor Nj/Mj−1

is then discrete, and Mj/Nj is a chief factor of G. For the last case, every
proper closed G-invariant subgroup of Vj is either trivial or a lattice. If G
does not preserve a lattice, then Vj is already a chief factor. If G preserves
a lattice Nj/Mj−1, then Nj/Mj−1 is discrete, and Mj/Nj is compact.

By including the Nj terms as needed, we obtain a G-invariant series from
H to L with at most k ≤ 2d factors such that each factor is compact,
discrete, or a chief factor. Additionally, at most d of the factors are neither
compact nor discrete, since each Vj contributes at most one such factor. Let
us make a further observation for later use: If there are exactly 2d factors in
the series, then each Vj is one-dimensional, hence abelian, and divided into
a discrete factor Nj/Mj−1 and a compact factor Mj/Nj .
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For the general case, let L′ be the preimage of (L/H)◦ and let H ′ be
the preimage of RadLE(L

′/H). By our work above, there is a G-invariant
series from H ′ to L′ with at most 2d factors of the appropriate form. Since
both H ′/H and L/L′ are compact, we immediately obtain the required G-
invariant series from H to L with at most l + 2 factors where l ≤ 2d such
that at most d factors are non-compact. If l = 2d, the uppermost factor
in the series from H ′ to L′ can be combined with L/L′, so we find a series
with 2d+ 1 factors. We thus deduce that there is an essentially chief series
from H to L with at most 2d + 1 factors such that at most d factors are
non-compact. �

Lemma 4.3. Suppose that G is a compactly generated locally compact group,
H ≤ L are closed normal subgroups of G, and Γ is a Cayley–Abels graph for
G such that deg(G) = deg(Γ). If G◦ ≤ H, then there exists a series

H =: C0 ≤ K0 ≤ D0 ≤ · · · ≤ Cn ≤ Kn ≤ Dn = L

of closed normal subgroups of G with n ≤ deg(Γ/H)− deg(Γ/L) such that

(1) for 0 ≤ i ≤ n, Ki/Ci is compact, and Di/Ki is discrete; and
(2) for 1 ≤ i ≤ n, Ci/Di−1 is a chief factor of G.

Proof. Set k := deg(Γ/H) and m := deg(Γ/L). By induction on i ≤ k −m,
we prove there exists a series of normal subgroups of G

H =: C0 ≤ K0 ≤ D0 ≤ · · · ≤ Ci ≤ Ki ≤ Di ≤ L

such that claims (1) and (2) hold of all factors up to i and that there is
i ≤ j ≤ k −m for which Di is maximal among normal subgroups of G such
that deg(Γ/Di) = k − j and Di ≤ L.

For i = 0, it follows from Lemma 3.1 and Zorn’s lemma that there exists
D0 maximal such that deg(Γ/D0) = k and H ≤ D0 ≤ L. The graph Γ/H is
a Cayley–Abels graph for G/H with degree k, and

deg((Γ/H)/(D0/H)) = deg(Γ/D0) = k.

Applying Lemma 3.2, there is K0 E G such that H ≤ K0 ≤ D0 with K0/H
compact, open, and normal in D0/H. We conclude that C0 = H, K0, and
D0 satisfy the inductive claim when i = 0 with j = 0.

Suppose we have built our sequence up to i. By the inductive hypothesis,
there is i ≤ j ≤ k − m such that Di is maximal with deg(Γ/Di) = k − j
and Di ≤ L. If j = k − m, then the maximality of Di implies Di = L,
and we stop. Else, let j′ > j be least such that there is M E G with
deg(Γ/M) = k − j′ and Di ≤ M ≤ L. We take Ci+1 E G to be minimal
such that deg(Γ/Ci+1) = k − j′ and Di < Ci+1 ≤ L; Lemma 3.1 ensures
such a subgroup exists.

Consider a closed N E G with Di ≤ N < Ci+1. Putting deg(Γ/N) = l,
Proposition 2.16 implies k − j′ ≤ l ≤ k − j, and the minimality of Ci+1

further implies k − j′ < l. On the other hand, we chose j′ > j least such
that there is M E G with deg(Γ/M) = k − j′ and Di ≤M ≤ L. Therefore,
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l = k − j. In view of the maximality of Di, we deduce that Di = N and
that Ci+1/Di is a chief factor.

Applying again Lemma 3.1, there is Di+1 E G maximal such that

deg(Γ/Di+1) = k − j′

and Ci+1 ≤ Di+1 ≤ L. Lemma 3.2 supplies Ki+1 E G such that Ci+1 ≤
Ki+1 ≤ Di+1 with Ki+1/Ci+1 compact and open in Di+1/Ci+1. This com-
pletes the induction.

Our procedure halts at some n ≤ k−m. At this stage, Dn = L, verifying
the theorem. �

We now use Lemmas 4.2 and 4.3 to refine a normal series factor by factor
to produce an essentially chief series.

Theorem 4.4. Let G be a compactly generated locally compact group and
let (Gi)

m−1
i=1 be a finite ascending sequence of closed normal subgroups of G.

Then there exists an essentially chief series for G

{1} = K0 ≤ K1 ≤ · · · ≤ Kl = G,

such that

(1) {G1, . . . , Gm−1} is a subset of {K0, . . . ,Kl}; and
(2) if G◦ ∈ {G1, . . . , Gm−1}, then l ≤ 2m + 2 dim∞R (G) + 3 deg(G), and at

most dim∞R (G)+deg(G) of the factors Ki+1/Ki are neither compact nor
discrete.

Proof. Let us extend the series by G0 := {1} and Gm := G obtaining the
series

{1} =: G0 ≤ G1 ≤ · · · ≤ Gm−1 ≤ Gm := G.

For each j ∈ {0, . . . ,m − 1}, we apply Lemma 4.2 to H := Gj and L
such that L/Gj = (Gj+1/Gj)

◦ to refine the series. We then refine again by
applying Lemma 4.3 to L := Gj+1 and H such that H/Gj = (Gj+1/Gj)

◦.
This yields the desired refined series claimed in (1).

For (2), suppose G◦ ∈ {G0, . . . , Gm−1}; say that Gk = G◦ for some 0 ≤
k ≤ m − 1. For each i < k, Lemma 2.7 yields a closed normal Hi+1 of G
with Gi ≤ Hi+1 ≤ Gi+1 such that Gi+1/Hi+1 is discrete and Hi+1/Gi is
connected-by-compact. We may thus apply Lemma 4.2 to each of the pairs
Gi ≤ Hi+1 with i < k to produce a refined series. (If k = 0, there is nothing
to do at this stage.)

In the refined series, there are at most 2(dim∞R (Gi+1) − dim∞R (Gi)) + 2
terms T such that Gi ≤ T < Gi+1. Additionally, at most dim∞R (Gi+1) −
dim∞R (Gi) factors are neither compact nor discrete. The number of terms
in our refined series strictly below Gk is thus at most

k−1∑
i=0

(2(dim∞R (Gi+1)− dim∞R (Gi)) + 2) = 2k + 2 dim∞R (G),
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and the total number of factors that are neither compact nor discrete is at
most

k−1∑
i=0

(dim∞R (Gi+1)− dim∞R (Gi)) = dim∞R (G).

We now consider the series Gk ≤ . . . Gm−1 ≤ Gm = G. If G = Gk, we are
done; we thus suppose that Gk < G. Let Γ be a Cayley–Abels graph for G
with deg(Γ) = deg(G) and put kj := deg(Γ/Gj). For each j ∈ {k, . . . ,m−1},
we apply Lemma 4.3 to each pair Gj ≤ Gj+1 to obtain a refined series. This
results in a series in which the number of terms T such that Gj ≤ T < Gj+1

is at most 3(kj − kj+1) + 2, and at most kj − kj+1 of the factors are neither
compact nor discrete. The total number of terms in the refined series not
including Gm is thus at most∑m−1

j=k (3(kj − kj+1) + 2) = 2(m− k) + 3(deg(Γ)− deg(Γ/G))

≤ 2(m− k) + 3 deg(G),

and the total number of non-compact, non-discrete factors is at most

m−1∑
j=1

(kj − kj+1) ≤ deg(G).

Putting together our two refined series, we obtain an essentially chief
series

{1} = K0 ≤ K1 ≤ · · · ≤ Kl = G

such that

l ≤ 2k + 2 dim∞R (G) + 2(m− k) + 3 deg(G)
≤ 2m+ 2 dim∞R (G) + 3 deg(G).

Furthermore, the number of factors that are neither compact nor discrete is
at most dim∞R (G) + deg(G). �

Remark 4.5. For any n ≥ 0, the direct product of n compactly gener-
ated non-discrete simple locally compact groups gives a compactly generated
l.c.s.c. group such that any essentially chief series has n chief factors.

One can also construct compactly generated l.c.s.c. groups such that any
essentially chief series has at least n compact factors or n discrete factors.
This can be arranged by taking wreath products. For example, let K be
a non-abelian finite simple group and V be an infinite finitely generated
simple group. The group V acts on KV , so we may form G := KV o V ,
which is locally compact. Fixing U a proper open subgroup of KV , G acts
faithfully and transitively on the cosets X := G/U . We obtain a second
locally compact group G′ :=

⊕
X V o G. One checks that any chief series

for G has one compact factor and two discrete factors. By taking more
wreath products, one produces any desired number of discrete or compact
factors.



THE ESSENTIALLY CHIEF SERIES 19

4.2. Uniqueness of essentially chief series. We finally obtain a Jordan–
Hölder theorem for essentially chief series, using the general properties of
associated chief factors obtained in [7]. For this uniqueness result, we need
to exclude chief factors associated to compact and discrete factors.

Definition 4.6. For G a Polish group and K/L a chief factor of G, we say
that K/L is negligible if K/L is either abelian or associated to a compact or
discrete chief factor. A chief block a ∈ BG is negligible if a has a compact
or discrete representative. The collection of non-negligible chief blocks of G
is denoted by B∗G. See Subsection 2.2 for the definitions of the association
relation and chief blocks.

Using the general methods outlined in [1, Appendix II], one can produce
negligible chief factors which are neither abelian, compact, nor discrete.

Remark 4.7. In [8], we show that all negligible chief factors K/L in an
l.c.s.c. group are either quasi-discrete, meaning that the elements of K/L
with open centralizer form a dense subgroup of K/L, or compact. The
work [1] furthermore shows quasi-discrete groups have restrictive topological
structure.

In contrast to the results about existence of chief series, we do not need
to assume that G is compactly generated for our Jordan–Hölder theorem.

Theorem 4.8. Suppose that G is an l.c.s.c. group and that G has two
essentially chief series (Ai)

m
i=0 and (Bj)

n
j=0. Define

I := {i ∈ {1, . . . ,m} | Ai/Ai−1 is a non-negligible chief factor of G}; and
J := {j ∈ {1, . . . , n} | Bj/Bj−1 is a non-negligible chief factor of G}.

Then there is a bijection f : I → J , where f(i) is the unique element j ∈ J
such that Ai/Ai−1 is associated to Bj/Bj−1.

Proof. Theorem 2.3 provides a function f : I → {1, . . . , n} where f(i) is the
unique element of {1, . . . , n} such that Ai/Ai−1 is associated to a subquotient
of Bf(i)/Bf(i)−1.

If Bf(i)/Bf(i)−1 is compact or discrete, then Ai/Ai−1 is associated to
a compact or discrete factor of G, which contradicts our choice of I. The
factor Bf(i)/Bf(i)−1 is thus chief, and Ai/Ai−1 is associated to Bf(i)/Bf(i)−1.
Theorem 2.3 implies Bf(i)/Bf(i)−1 is also non-abelian. Since association
is an equivalence relation for non-abelian chief factors, we conclude that
Bf(i)/Bf(i)−1 is non-negligible, and therefore, f(i) ∈ J .

We thus have a well-defined function f : I → J . The same argument
with the roles of the series reversed produces a function f ′ : J → I such
that Bj/Bj−1 is associated to Af ′(j)/Af ′(j)−1. Since each factor of the first
series is associated to at most one factor of the second by Theorem 2.3, we
conclude that f ′ is the inverse of f , hence f is a bijection. �
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Corollary 4.9. If G is a compactly generated l.c.s.c. group, then each a ∈
B∗G is represented exactly once in every essentially chief series for G, and
|B∗G| ≤ dim∞R (G) + deg(G).

Proof. Let (Gi)
n
i=0 be an essentially chief series for G. For a ∈ B∗G, fix a

representative A/B ∈ a and use Theorem 4.4 to refine the series {1} ≤ A <
B ≤ G to a chief series (Hi)

k
i=0. Theorem 4.8 now implies there is a unique

0 ≤ i < n such that A/B is associated to Gi+1/Gi. Hence, Gi+1/Gi ∈ a. On
the other hand, association is an equivalence relation, so the uniqueness of
i implies that Gi+1/Gi is the only representative of a appearing in (Gi)

n
i=0.

The chief block a ∈ B∗G is thus represented exactly once in any essentially
chief series for G.

For the second claim, we use Theorem 4.4 to produce (Ki)
m
i=0 an es-

sentially chief series for G that refines the series {1} ≤ G◦ ≤ G. By the
previous paragraph, each a ∈ B∗G admits exactly one representative with
the form Ki+1/Ki for some 0 ≤ i < m. Moreover, such a representative
must be neither compact nor discrete. Theorem 4.4 ensures that we can
choose (Ki)

m
i=0 such that the number of non-compact, non-discrete factors

is at most dim∞R (G) + deg(G), hence |B∗G| ≤ dim∞R (G) + deg(G). �

To conclude this section, we note that each non-negligible block of a
compactly generated group admits a unique smallest closed normal subgroup
covering it; this somewhat technical observation is important in [8]. See
Subsection 2.2 for the definition of a normal subgroup covering a chief block.

Proposition 4.10. Let G be a compactly generated l.c.s.c. group with a ∈
B∗G. Then there is a closed normal subgroup Ga of G such that for every
closed normal subgroup K of G, K covers a if and only if K ≥ Ga.

Proof. Let K be the set of closed normal subgroups of G that cover a and
set Ga :=

⋂
K. By [7, Lemma 7.10], the set K is a filtering family, and thus,

Theorem 3.3 ensures there exists L ∈ K and Ga ≤ M ≤ L such that M is
G-invariant and open in L and M/Ga is compact.

We now consider the series

{1} ≤ Ga ≤M ≤ L ≤ G.
Theorem 2.3 implies that one of L/M , M/Ga, or Ga/{1} covers a. As a is
non-negligible, neither the discrete factor L/M nor the compact factorM/Ga

covers a. We deduce that Ga covers a, hence every closed normal subgroup
of G that contains Ga covers a. Since every closed normal subgroup of G
that covers a contains Ga by construction, the proposition is verified. �
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